

School of Engineering

A Decentralized Review System for Data Marketplaces

Game Theoretic Analysis of Incentive-based Mechanism

Anusha Avyukt, Gowri Ramachandran, Prof. Bhaskar Krishnamachari

Autonomous Networks Research Group

Viterbi School of Engineering

University of Southern California

https://anrg.usc.edu

May 3-5, 2021, ICBC Conference

IoT Data Marketplace

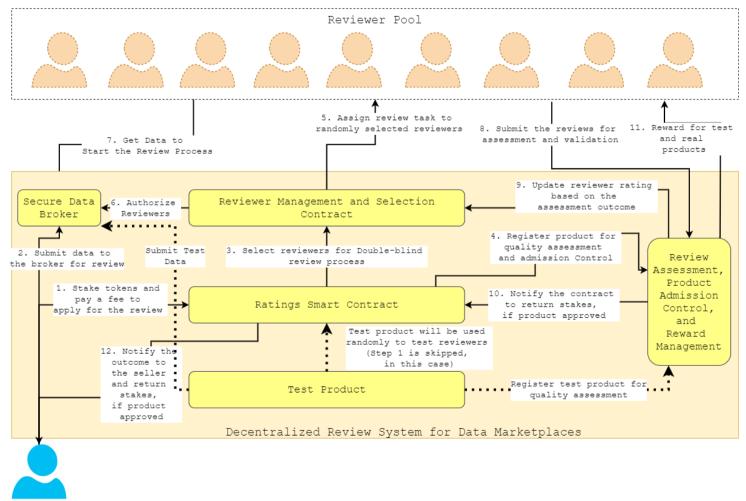
Motivation

2030: IoT DATA MARKETPLACE

MARKETPLACES

Data Marketplaces with Blockchain Superpowers

Use Ocean Market to publish data, stake on data (curate), and buy data. Earn by selling, staking, or running your own fork of Ocean Market. Data has automatic price discovery. Data is published as interoperable ERC20 datatokens. Compute-to-data enables private data to be bought & sold. It's a decentralized exchange (DEX), tuned


for data.

https://www.accenture.com/us-en/insights/high-tech/dawn-of-data-marketplace, https://oceanprotocol.com/technology/marketplaces,

Contributions

- Novel incentive-based decentralized review system for data marketplaces
- Game-theoretic modeling of the incentives of review process and identifying conditions under which reviewers behaving honestly is the unique Nash equilibrium
- Simulations to find which incentives are effective
- Code and data used are made publicly accessible at https://github.com/ANRGUSC/DecentralizedReviewSystem

Architechture for Decentralized Review System

Game-Theoretic Model for Reviewer Strategies

Payoff Matrix for Reviewer's Game

Payoff for Reviewer 1 and Reviewer 2

Objective: Find conditions where dominant Nash strategy is to review

Parameters

W : Reward for review of test product R : Reward for matching majority decision

 p_T : Prob. of Test product

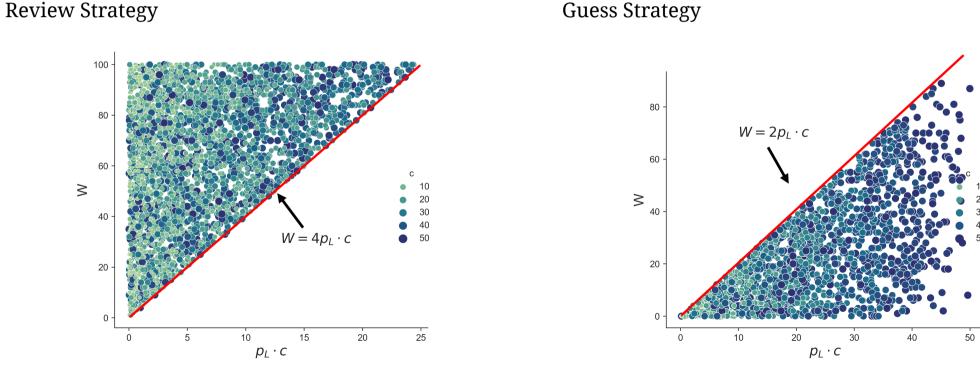
 $p_L * C$: Cost of reviewing when lazy

 p_Q : Prob. of high quality review

$\begin{tabular}{|c|c|c|c|c|} \hline Guess & Review \\ \hline Guess & [\alpha = \frac{(1-p_T)R}{2} + \frac{p_TW}{2}, \ \alpha] & [\alpha, \ \beta = \frac{(1-p_T)R}{2} + p_Tp_QW + \frac{p_T(1-p_Q)W}{2} - p_LC] \\ \hline Review & [\beta, \ \alpha] & [\gamma = (1-p_T)(p_Q^2R + p_Q(1-p_Q)R + \frac{(1-p_Q)^2R}{2}) + p_Tp_QW + \frac{p_T(1-p_Q)W}{2} - p_LC, \gamma] \\ \hline TABLE I \\ \hline \end{array}$

PAYOFF MATRIX FOR REVIEWER GAME

Desired Equilibrium: (Review, Review) is the only Nash Equilibrium

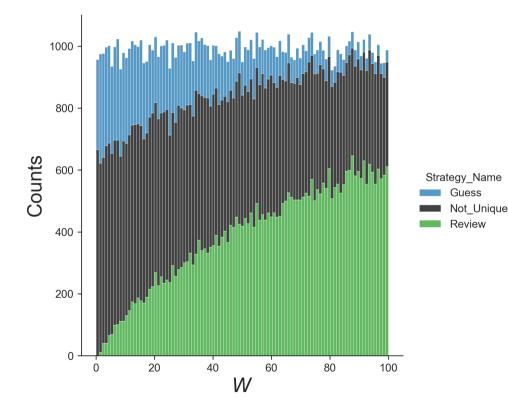

Reviewer has two strategies 1. Review OR 2. Guess

```
eta > lpha and \gamma > lpha
```

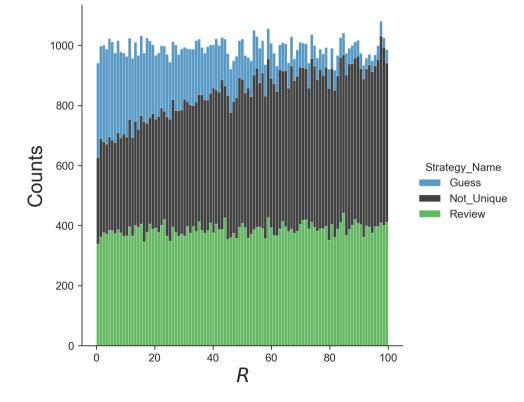
Assuming $p_Q = 1$,

Simulation Results

Which incentive works for ensuring review as the dominant strategy?

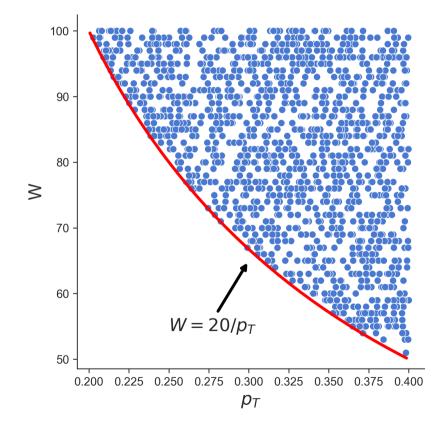


Guess Strategy


pT=0.5

W vs R for Unique Nash equilibrium

W: Reward for Assessing Test Product



R: Reward for Matching Majority Decision

Relation between pT and W: Review Strategy

keeping $p_L \cdot C$ constant and varying p_T from 0.1 to 0.4

Higher Reward for Test Product as p_T increases

Seller's game

Parameters:

 $P_{A,H}, P_{R,L}$:Prob. of accepting a high/low quality product

 M_H, M_L :Expected Profit from a high/low quality product

 F_{apply} :Application fee for getting a product reviewed

 F_{stake} :Staking fee risked by the Seller

 $U^{seller}_{apply,H}$, $U^{seller}_{apply,L}$:Seller's utility for a

- Utility from posting a high quality product will increase as the probability of getting an accept increases
- Utility for posting a low quality product will decrease as probability of losing the staking fees increases
- Probability of a high quality of review increases the quality of products in the data market

Conclusions

Decentralized Incentivemechanism

Conditions for honest review process

Simulations for gametheoretic analysis

- Proposed and analyzed a novel comprehensive incentive-based decentralized review system for data marketplaces
- Unique Nash equilibrium of reviewing which encourages the reviewers to do an honest review and ensure high quality of data marketplace
- Simulations for a game-theoretic model that finds W to be more effective than R

Future Work

Platform Design

- Selection of Reviewers
- Test Generation
- Review Frequency
- Scalability
- Blockchain

Trust

- Malicious users
- Counterfeiting
- Incorrect reviews
- Confidentiality

Prototype for implementing the proposed mechanism for an open data marketplace.

